On multi-time-step monolithic coupling algorithms for elastodynamics

نویسندگان

  • S. Karimi
  • K. B. Nakshatrala
چکیده

We present a way of constructing multi-time-step monolithic coupling methods for elastodynamics. The governing equations for constrained multiple subdomains are written in dual Schur form and enforce the continuity of velocities at system time levels. The resulting equations will be in the form of differential-algebraic equations. To crystallize the ideas we shall employ Newmark family of time-stepping schemes. The proposed method can handle multiple subdomains, and allows different time-steps as well as different time stepping schemes from the Newmark family in different subdomains. We shall use the energy method to assess the numerical stability, and quantify the influence of perturbations under the proposed coupling method. We also discuss the conditions under which the proposed method will be energy preserving, and the conditions under which the method will be energy conserving. Several numerical examples are presented to illustrate the accuracy and stability properties of the proposed method. We shall also compare the proposed multi-time-step coupling method with some other similar methods available in the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A monolithic multi-time-step computational framework for first-order transient systems with disparate scales

Developing robust simulation tools for problems involving multiple mathematical scales has been a subject of great interest in computational mathematics and engineering. A desirable feature to have in a numerical formulation for multiscale transient problems is to be able to employ different time-steps (multi-time-step coupling), and different time integrators and different numerical formulatio...

متن کامل

A monolithic multi-time-step computational framework for advective-diffusive-reactive transient systems with disparate scales

Developing robust simulation tools for problems involving multiple mathematical scales has been a subject of great interest in computational mathematics and engineering. A desirable feature to have in a numerical formulation for multiscale transient problems is to be able to employ different time-steps (multi-time-step coupling), and different time integrators and different numerical formulatio...

متن کامل

Multi-objective optimization of buckling load for a laminated composite plate by coupling genetic algorithm and FEM

In this paper, a combination method has been developed by coupling Multi-Objective Genetic Algorithms (MOGA) and Finite Element Method (FEM). This method has been applied for determination of the optimal stacking sequence of laminated composite plate against buckling. The most important parameters in optimization of a laminated composite plate such as, angle, thickness, number, and material of ...

متن کامل

A Modified Multi Time Step Integration for Dynamic Analysis

In this paper new implicit higher order accuracy (N-IHOA) time integration based on assumption of constant time step is presented for dynamic analysis. This method belongs to the category of the multi time step integrations. Here, current displacement and velocity are assumed to be functions of the velocities and accelerations of several previous time steps, respectively. This definition causes...

متن کامل

Towards positivity preservation for monolithic two-way solid-fluid coupling

We consider complex scenarios involving two-way coupled interactions between compressible fluids and solid bodies under extreme conditions where monolithic, as opposed to partitioned, schemes are preferred for maintaining stability. When considering such problems, spurious numerical cavitation can be quite common and have deleterious consequences on the flow field stability, accuracy, etc. Thus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 273  شماره 

صفحات  -

تاریخ انتشار 2014